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Optimizing the Photon Information Efficiency
of Point-to-Point Communication Using
Entanglement
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ABSTRACT. — In order to optimize communication over a quantum channel for

practical scenarios, we must deliver demanded classical and quantum resources with as

little power as possible. We consider the problem of maximizing the photon

information efficiency of free space optical communication over a single mode channel

subject to time-varying demands for classical information. By drawing from results on

the joint capacity region for transmitting classical information (bits), quantum

information (qubits), and entanglement (ebits) over the lossy bosonic channel, we are

able to formulate the problem as a discrete optimization. This enables us to explicitly

compute the maximum photon information efficiency for a given demand profile, and

the associated time-varying average photon numbers and rates of entanglement

generation and consumption necessary to achieve it. Along the way, we derive a

closed-form expression for the minimal average photon number necessary to achieve a

particular rate pair of bit and ebit communication in the case of zero qubit

communication. Our results yield examples where we can optimize our photon

information efficiency by generating entanglement during times of low demand for

classical information, and later use it to communicate bits at a lower average photon

number during times of higher demand.

I. Introduction

Due to a growing interest in quantum applications to security, computation, and

sensing, a network of quantum channels will be necessary in the future in order to

communicate both classical and quantum information, as well as entanglement. A key
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component to this network will involve transmitting photons over free-space optical

links. A standard of performance for free space optical communication is the photon

information efficiency (PIE), or how many classical bits are communicated per photon

in each optical mode. When communicating over an optical channel, the PIE is given

by C
NS

, where C is the classical Shannon channel capacity [1] and NS is the average

photon number of the ensemble of bosonic states used in communication. The PIE is

theoretically unbounded for free-space communication, mathematically modeled as a

pure-loss bosonic channel. There is, however, a fundamental tradeoff between PIE and

dimensional efficiency (DIE), which is the number of bits transmitted per temporal,

spatial, or polarization dimension. At low DIE, the PIE can be approached by schemes

such as pulse position modulation (PPM) and photon counting detection [2]. In

general, it was shown in Giovannetti et al. [3] that for a fixed constraint on the

average photon number NS , the capacity of the pure-loss bosonic channel is given by

C = g(ηNS), where η is the transmissivity of the channel (the fraction of photons

which are successfully transmitted) and g(x) := (x+ 1) log2(x+ 1)− x log2 x, the

entropy of the Bose-Einstein distribution. This capacity can be achieved by an

ensemble of coherent states, which consequently maximizes the PIE at this photon

number.

Since the optical channel is fundamentally quantum in nature, it can be used to

transmit resources other than just classical information, including quantum

information (measured in qubits) and entanglement (measured in ebits). Each of these

resources has its own rate at which it can be transmitted.

Holevo-Schumacher-Westmoreland (HSW) coding [4, 5] achieves the Holevo

information as a rate of classical communication, and the coherent information of a

quantum channel is achievable as a rate of communication for quantum information

[6–8]. Some protocols simultaneously encode several of these resources in the same

quantum state, which has been shown to outperform rates achieved by time-sharing

between optimal schemes to transmit the resources individually [9]. Others, notably

superdense coding and quantum teleportation, use entanglement as a resource to

transmit classical or quantum information at a higher rate [10–13]. Together, classical

information, quantum information, and entanglement share a joint capacity region

which depends on both NS and η [14–16].

In realistic settings, such as deep space communication with spacecraft, the demand

for classical information from sender to receiver varies over time, and entanglement

will not be an unlimited resource with which to boost classical or quantum

communication. As a result, it may make sense to vary our average photon number

over time in order to achieve the maximum overall PIE. Furthermore, in times of low

demand for classical information, it could be optimal to use extra photon resources to

generate shared entanglement between sender and receiver, which may be used to

boost the classical capacity at a lower photon number in times of higher demand. In

this article, we explore this problem assuming a constant channel transmissivity. In

Sections II and III, we construct an optimization that allows us to compute the
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maximum PIE subject to a given time-varying demand for classical information, and

finite stored entanglement. We simplify our problem to the case of a finite number of

equal-duration time intervals in which we have constant rates of resource

communication, and focus only on transmitting classical information and consuming

(or generating) entanglement to maximize PIE. In Section IV, we derive a function for

the minimal photon number needed to achieve given rates of bit-communication and

ebit-generation/consumption. In Sections V, VI, and VII, we explicitly compute the

achievable photon information efficiency for demand profiles in up to three time

intervals. Using the aforementioned function, we inductively construct an expression

for the minimal photon number to communicate a demand profile given an initial

amount of stored entanglement. We show that even for a small number of time

intervals we observe cases with substantial percent increases in PIE by dynamically

storing and consuming entanglement compared to communicating at a constant rate of

entanglement consumption.

II. The Entanglement Battery Problem

We consider communicating over a single-mode lossy bosonic channel. If we

mathematically denote the annihilation operator of our input signal by âin, and that

of the environment by êin, then the channel transforms these operators as

âout =
√
η âin +

√
1− η êin (1)

êout = −
√
1− η âin +

√
η êin,

where η is the transmissivity of the channel. The environment mode may be assumed

to start out in a vacuum state (the pure loss channel) or a thermal state (the thermal

noise channel). The output signal state is determined by tracing out the environment.

Multi-mode communication can be modeled by extending these maps bilinearly to the

Kronecker product of the individual mode annihilation operators.

For now, we will consider the pure-loss single mode channel, which models the case of

free-space communication with noise dominated by photon loss. The thermal noise

channel is less straightforward, and in which even the classical information capacity C

is only known up to a minimum output entropy conjecture [3, 17]. We will work over

regimes in which the transmissivity of the channel, η, can be assumed to be constant

and greater than 1/2. In that scenario, Wilde et al. [16] proved that if the sender is

limited to communication with an average of NS photons per channel use, there is a

tradeoff between the rates of classical communication C in bits, quantum

communication Q in qubits, and entanglement generation E in ebits per channel use.

This is given by the union of the regions

C + 2Q ≤ g(λNS) + g(ηNS)− g((1− η)λNS) =: fC2Q(λ,NS),

Q+ E ≤ g(ηλNS)− g((1− η)λNS) =: fQE(λ,NS) , (2)

C +Q+ E ≤ g(ηNS)− g((1− η)λNS) =: fCQE(λ,NS),
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where g(x) := (x+ 1) log2(x+ 1)− x log2 x and λ ∈ [0, 1]. We will use the functions

fC2Q(λ,NS), fQE(λ,NS), and fCQE(λ,NS) to refer to the right sides of these three

expressions, as written above. For a given lambda, each one of these regions is

achieved by the coding ensemble {pα, DA′
(α)|ψTMS⟩}, where

|ψTMS⟩AA′ :=

∞∑
n=0

√
(λNS)n

(λNS + 1)n+1
|n⟩A|n⟩A′ (3)

is a two-mode squeezed state,

DA′
(α) := exp(αâ′† − α∗â′) (4)

is the displacement operator acting on A′, and

pα =
1

π(1− λ)NS
exp

(
−|α|2

(1− λ)NS

)
(5)

is a Gaussian probability distribution. Alice transmits the A′ system to Bob over the

lossy bosonic channel NA′→B , maintaining the A subsystem. In doing so, Alice can

communicate bits or qubits to Bob, and the two can establish shared ebits of

entanglement or use them in their protocols. Positive values of C, Q, and E in

Equation (2) correspond to generation of resources, whereas negative values

correspond to consumption. For instance, the standard quantum teleportation

protocol requires Alice to use two noiseless classical bit transmissions and consume one

shared ebit with Bob in order to communicate a single qubit, leading to C = −2,

Q = 1, and E = −1. Another example is the superdense coding protocol, in which

Alice uses a single qubit transmission and consumes one ebit shared with Bob to

communicate two classical bits, destroying the ebit and the transmitted qubit in the

process, yielding C = 2, Q = −1, and E = −1. As these examples help to clarify, C

and Q are actually better interpreted as the transmission of a bit or a qubit noiselessly

over a channel. Negative values of C and Q correspond to Alice using bit or qubit

transmissions to facilitate a protocol, while positive values represent actual

information transmitted to Bob. In teleportation and superdense coding, the positive

values of Q and C, respectively, correspond to simulated uses of an actual qubit or bit

channel. This idea is made concrete by Wilde [18].

For a fixed average photon number, the inequalities in (2) yield the joint rate region of

(C,Q,E)-tuples for the lossy bosonic channel. The tradeoff-coding protocol described

in Wilde et al. [16, 19] which achieves this region can provably outperform methods

such as time-sharing in such problems as minimizing the rate of ebit consumption for

a given rate of classical communication. It does not, however, account for issues such

as limited entanglement or ebit storage constraints.

In this paper, we will show how to apply the tradeoff-coding region to a scenario in

which we have finite entanglement and varying communication demands over time.

Our intuition is that if we consume fewer ebits during times of low information

demand, we can store entanglement to assist communication at times of high demand.
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In doing so, we should be able to communicate at a higher PIE. We will focus on the

case of zero net qubit communication (Q = 0) and form an optimization problem to

maximize PIE, subject to a set of time-varying demands for classical information and

constraints on stored entanglement. This is similar to a setup for a power network,

where stored entanglement takes the place of stored energy as a limited resource. As

such, we will sometimes refer to our setup as an “entanglement battery” problem.

We mention the slight caveat that the (C,Q,E) rate tuples are net rates of resource

generation or consumption. This means, for instance, that even if E = 0, a protocol

might at various times make use of entanglement, though the total amounts consumed

and generated will balance out. Thus, as we formulate our framework, we will place

constraints on the net rates of resource use over various time intervals.

III. Formulating a Discrete Optimization Problem

To concretely formulate our problem, we consider a discrete setting in which we have

equal-length time intervals indexed by t = 1, 2, .... During each time interval t, Alice

uses an average photon number Nt to communicate to Bob at average rates

(Ct, Qt, Et) of bits, qubits, and ebits. Note that while this discretization is intended to

approximate the continuous-time communication scenario, we must assume that each

interval is long enough to achieve these average rates with a physically implementable

protocol. We will associate a cost of communication which is proportional to Nt,

reasoning that the average photon number should determine the power consumed over

interval t since our time intervals are equal length. For the time being, we will restrict

our attention to the case where Qt = 0 for all t. In particular, we assume that Alice is

only interested in communicating classical bits to Bob. As we mentioned before, Alice

may transmit qubits in the process in order to facilitate her communication protocol,

but the net rate of quantum communication over the interval will be zero.

Our goal will be to optimize PIE, measured in bits per photon. To this end, we will

use the notation C(Nt, Et) to denote the maximum rate at which we can communicate

classical bits as a function of photon number Nt and rate of entanglement use Et. To

make our problem more concrete still, let us assume that at time t, there is a demand

Dt for a rate of classical communication. We are interested in the case where Dt ≥ 0

for all t, since Alice’s goal is ultimately to transmit classical information to Bob. But

in this regime, if at some time there is a lower demand for classical information, Alice

and Bob could potentially use photons to establish new entanglement to assist in

classical communication later. We will assume that the two share some initial

entanglement allotment, E0 ≥ 0.

We now make several observations: First of all, for a fixed number of time instants M ,

assuming equal-length time intervals, the overall photon information efficiency is

proportional to
∑M

t=1 Dt∑M
t=1 Nt

. Since the demands Dt are fixed, maximizing PIE is equivalent

to minimizing the sum of the average photon numbers. We have several constraints.
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First, we need to make sure that the values of Nt and Et at each time interval are

sufficient to meet our demands, namely C(Nt, Et) ≥ Dt. We expect C(Nt, Et) to be

increasing in Nt, and since our goal is to minimize
∑M

t=1Nt it seems reasonable to

replace this constraint with an equality, but we will hold off on this for now. We also

need to ensure that we do not exceed our allotment of stored entanglement at any

time n, which is captured by the set of inequalities E0 +
∑n

t=1Et ≥ 0, for all n ≥ 1.

This allows us to write the following optimization problem for maximizing PIE:

minimize
{Nt,Et}M

t=1

M∑
t=1

Nt

subject to Nt ≥ 0, t = 1, ...,M, (6)

C(Nt, Et) ≥ Dt, t = 1, ...,M,

E0 +
n∑

t=1

Et ≥ 0, n = 1, ...,M.

Seeking to translate this optimization into the context of the lossy bosonic channel, we

refer to the inequalities defined in Equation (2), which project to a region in (C,E)

space when we assume that Q = 0. We will assume that η > 1/2. Then, noting that

g(x) is nonnegative and increasing for x ≥ 0, we can verify that fC2Q(λ,NS),

fQE(λ,NS), and fCQE(λ,NS) are all nonnegative. Since we are interested in the case

of nonnegative classical communication (C ≥ 0), for a fixed λ and NS we have the

following necessary upper bound on the entanglement generated:

E ≤ min(fQE(λ,NS), fCQE(λ,NS)) (7)

= fQE(λ,NS), (8)

where the equality follows from the fact that g(x) is an increasing function.

For given values of λ, NS , and E ≤ fQE(λ,NS), we have that rate of bit transmission

C is bounded as

C ≤ min(fC2Q(λ,NS), fCQE(λ,NS)− E) (9)

= min(fCQE(λ,NS) + g(λNS), fCQE(λ,NS)− E) (10)

= fCQE(λ,NS) + min(g(λNS), − E). (11)

It follows that if −g(λNS) ≤ E ≤ fQE(λ,NS), then C ≤ fCQE(λ,NS)− E.

Furthermore, if E < −g(λNS), indicating a larger amount of entanglement

consumption, then there is no gain in the achievable rate of classical communication,

which is upper bounded by fCQE(λ,NS) + g(λNS) < fCQE(λ,NS)− E. For the sake

of adapting the optimization from Equation (6) to the lossy bosonic channel, this

indicates that we need only perform the optimization over entanglement values Et

between −g(λtNt) and fQE(λt, Nt), where λt is the particular value of λ used in time

interval t. Since the upper bound on capacity is achievable, then for a fixed value of λt

we have C(Nt, Et) = fCQE(λt, Nt)− Et for −g(λtNt) ≤ Et ≤ fQE(λt, Nt).
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Combining these observations, and noting the forms of the functions fCQE(λ,NS) and

fQE(λ,NS), we can rewrite the optimization in Equation (6) in the form

minimize
{λt,Nt,Et}

M∑
t=1

Nt

subject to g(ηNt)− g((1− η)λtNt) ≥ Dt + Et, (12)

− g(λtNt) ≤ Et ≤ g(ηλtNt)− g((1− η)λtNt),

E0 +

n∑
t=1

Et ≥ 0, n = 1, ...,M,

λt ∈ [0, 1].

We return now to the question of whether we can set C(Nt, Et) equal to Dt in the

optimization from Equation (6) without loss of generality, which in Equation (12)

amounts to replacing the constraint g(ηNt)− g((1− η)λtNt) ≥ Dt + Et with an

equality. We argue that this is an equivalent optimization. To see this, note that we

can replace the first two constraints in Equation (12) with the single expression:

−g(λtNt) ≤ Et ≤ min{f1(λt, Nt), f2(λt, Nt)}, (13)

where

f1(λt, Nt) := g(ηλtNt)− g((1− η)λtNt), (14)

f2(λt, Nt) := g(ηNt)−Dt − g((1− η)λtNt). (15)

Now suppose we have a feasible set of values {λt, Nt, Et}Mt=1. If Et is strictly less than

its upper bound, we can increase it and produce a new feasible point which has the

same value of
∑M

t=1Nt. Thus, assume without loss of generality that

Et = min{f1(λt, Nt), f2(λt, Nt)}. If f2(λt, Nt) ≤ f1(λt, Nt), we have the desired

equality. Otherwise, since −g(λtNt) ≤ 0 and f1(λt, Nt) is nonnegative, we are in the

situation

−g(λtNt) ≤ 0 ≤ Et = f1(λt, Nt) < f2(λt, Nt). (16)

Note that f1(λt, Nt) is increasing in λt, while f2(λt, Nt) is decreasing. Furthermore,

when λt = 1, we clearly have f2(λt, Nt) ≤ f1(λt, Nt). Thus, we can increase λt until

0 ≤ Et ≤ f1(λt, Nt) = f2(λt, Nt), and again increase Et to to be equal to both

functions. We end up with a new feasible point with the same value of
∑M

t=1Nt such

that g(ηNt)− g((1− η)λtNt) = Dt + Et as desired. Our optimization now becomes

minimize
{λt,Nt,Et}

M∑
t=1

Nt

subject to g(ηNt)− g((1− η)λtNt) = Dt + Et, (17)

− g(λtNt) ≤ Et ≤ g(ηλtNt)− g((1− η)λtNt),

E0 +

n∑
t=1

Et ≥ 0, n = 1, ...,M,

λt ∈ [0, 1].
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The optimization in Equation (17) may seem aggravatingly similar to that in Equation

(12), but as we will see shortly, introducing the equality constraint enables us to find a

closed form expression for the optimal photon number at a given time t, in terms of

the corresponding values of Dt and Et. For convenience, we will define the following

notation for the minimal photon number sum in the above optimization:

Definition 1. Let Sopt
M (D1, ..., DM , E0) be the minimal value of

∑M
t=1Nt achieved in

the optimization in Equation (17) for M time intervals, initial shared entanglement

E0, and classical information demands D1, ..., DM .

IV. Optimal Photon Number

One difficulty with the optimization in Equation (17) is that the parameter space over

the variables {λt, Nt, Et}Mt=1 is large and high-dimensional. To make the problem more

tractable, it is desirable to find ways to eliminate some of these variables. With a bit

of work, it turns out that we can reduce this optimization to one which is only in

terms of {Et}Mt=1. The first step toward this direction is to observe that we can

compute the optimal photon number Nt at time t as a function of the pair (Dt, Et).

The following theorem describes this function, and gives a simple description of the set

of feasible Et. First, we must define three functions in terms of g(x) and η:

h(x) := g(ηx)− g((1− η)x), (18)

L(x) := g−1(|x|) · I(x < 0) + h−1(|x|) · I(x ≥ 0), (19)

d(x) := h(g−1(x)) + x. (20)

Here, I(·) is an indicator function. Note that h(x) is increasing for η > 1/2, which is

our regime of interest.

We will also make use of the following simple lemma:

Lemma 1. The function x log
(
1 + 1

x

)
is increasing for x > 0.

Proof. This function has derivative log
(
x+1
x

)
− 1

x+1 =
∫ x+1

x
1
t dt−

1
x+1 . The lemma

follows from the fact that since 1
t is lower bounded by 1

x+1 over the unit interval

[x, x+ 1], then
∫ x+1

x
1
t dt ≥ ((x+ 1)− x) · 1

x+1 = 1
x+1 .

We are now equipped to state the theorem:

Theorem 1. If Et ≥ −d−1(Dt), then the minimal value of Nt such that the pair

(Nt, Et) is feasible in optimization in Equation (17) is given by the expression

Nopt
t (Dt, Et) =

1

η
g−1 (Dt + Et + g((1− η)L(Et))) . (21)

If Et < −d−1(Dt), then Et is not feasible in optimization in Equation (17).
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Proof. Consider the following relaxation of optimization from Equation (17):

minimize
{Lt,Nt,Et}

M∑
t=1

Nt

subject to g(ηNt)− g((1− η)Lt) = Dt + Et, (22)

− g(Lt) ≤ Et ≤ g(ηLt)− g((1− η)Lt),

E0 +

n∑
t=1

Et ≥ 0, n = 1, ...,M.

Here we have replaced the constrained variable λt and with the unconstrained variable

Lt, which is a surrogate for the product λtNt. Rewriting the equality constraint as

g(ηNt) = Dt + Et + g((1− η)Lt), (23)

or equivalently

Nt =
1

η
g−1(Dt + Et + g((1− η)Lt)), (24)

and noting that g(·) is an increasing function, we see that for fixed values of Dt and Et

the minimal Nt is achieved when Lt is minimal. Lt is constrained by the inequality

relations −g(Lt) ≤ Et ≤ g(ηLt)− g((1− η)Lt).

If Et < 0, then Lt is minimized when −g(Lt) = Et, or rather Lt = g−1(−Et) =

g−1(|Et|). Using this value for Lt and the corresponding value for Nt from Equation

(24), then if Lt/Nt ≤ 1 we can set λt = Lt/Nt to form a feasible set of values in the

original optimization from Equation (17). Furthermore, since Lt is minimal, we have

that the optimal value of Nt is
1
η g

−1(Dt + Et + g((1− η)g−1(|Et|))). On the other

hand, if Lt/Nt > 1 at the minimal value of Lt, then we must seek a feasible value of

λt = Lt/Nt at a higher value of Lt. Since we need λt ≤ 1, we note that this is

equivalent to requiring that Lt ≤ Nt. From Equations (23) and (24), and the fact that

g(·) is an increasing function, we can translate this to the condition that the difference

g(ηLt)− (Dt + Et + g((1− η)Lt)) (25)

be less than or equal to 0. By assumption, when Lt = g−1(−Et) we have Lt > Nt, so

this difference is positive. Differentiating Equation (25) with respect to Lt, we get

d

dLt
[g(ηLt)− (Dt + Et + g((1− η)Lt))]

= ηg′(ηLt)− (1− η)g′((1− η)Lt)

=
1

Lt log 2

[
ηLt log

(
1 +

1

ηLt

)
− (1− η)Lt log

(
1 +

1

(1− η)Lt

)]
. (26)

Since we assume η ≥ 1/2, and x log
(
1 + 1

x

)
is an increasing function, this derivative is

nonnegative for Lt > 0. In other words, the difference in (25) is increasing with respect

to Lt, so there is no feasible value of λt in optimization from Equation (17).
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We can formulate the condition for a feasible λt more cleanly as follows: when

Lt = g−1(−Et) we need the difference in Equation (25) to be nonnegative. In other

words,

g(ηg−1(−Et))− g((1− η)g−1(−Et))− Et ≥ Dt. (27)

Using the functions we defined in Equations (18) and (20), we can express this as the

relation d(−Et) ≥ Dt. Since d(·) is a composition of increasing functions, it is also

increasing, so this is equivalent to Et ≥ −d−1(Dt) as in the theorem statement.

Now suppose instead that Et ≥ 0. Then Lt is minimized by setting g(ηLt)−
g((1− η)Lt) = Et, so that Lt = h−1(Et). We again set Nt to
1
η g

−1(Dt + Et + g((1− η)Lt)) to satisfy the equality constraint in Equation (22). By

the same reasoning as before, if λt := Lt/Nt ≤ 1, then λt is feasible in optimization

from Equation (17) and this value of Nt is optimal. Also by our previous argument, if

Lt/Nt > 0, then since Lt is minimal, there is no feasible value for λt. In this case, our

criterion for a feasible λt is Lt ≤ Nt which corresponds to

h−1(Et) ≤
1

η
g−1(Dt + Et + g((1− η)h−1(Et))) (28)

⇐⇒ g(ηh−1(Et))− g((1− η)h−1(Et))− Et ≤ Dt (29)

⇐⇒ h(h−1(Et))− Et ≤ Dt (30)

⇐⇒ 0 ≤ Dt. (31)

Since we assume the demands Dt are nonnegative, this condition is always met, so all

nonnegative values of Et merit feasible solutions to optimization from Equation (17).

Thus, our criterion Et ≥ −d−1(Dt) defines all feasible pairs (Dt, Et).

We complete the proof by noting that the function L(·) from Equation (19) is defined

such that L(Et) = Lt for any feasible Et, so that the expression for Nopt
t (Dt, Et) in

Equation (21) is consistent with the optimal values of Nt we derived for both negative

and nonnegative Et.

In Figure 1, we depict the function Nopt
t (Dt, Et) by plotting with respect to Dt and Et

for η = 0.9. Note that in Figure 1(a), we can see that as the entanglement generation

increases from Et = 2 to Et = 3, the optimal photon number jumps dramatically over

all demands Dt plotted. In terms of our optimization in Equation (17), this could

indicate a need to generate entanglement conservatively in certain regimes.

A. The Question of Convexity and Properties of Nopt
t (Dt, Et)

Since the plots in Figure 1 suggest that the function Nopt
t (Dt, Et) is convex with

respect to each of Dt and Et, a natural question is whether our optimization in

Equation (17) is a convex problem. This is evidently not the case, as we can see by

examining the feasible region of the points (Et, Dt) carved out by the constraint

Et ≥ −d−1(Dt). We plot the curve Et = −d−1(Dt) lower-bounding this region in
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Figure 1. The optimal photon number Nopt
t (Dt, Et) plotted with respect to (a) the demand for

classical communication, Dt, for fixed values of consumed or generated entanglement Et, and (b) the

value of Et for fixed values of Dt. In both plots, we have fixed the transmissivity at η = 0.9.

Figure 2(a), and the detrended version of the curve (subtracting the best straight-line

fit) in Figure 2(b). The feasible (Et, Dt) region is represented by the area above these

curves, and from the detrended plot, we can see that this region is not convex.

One thing we can show, however, is the following:

Lemma 2. The function Nopt
t (Dt, Et) is increasing in both Dt and Et for

1/2 ≤ η ≤ 1.

Proof. First, note that if (Dt, Et) is a feasible point (meaning that Et + d−1(Dt) ≥ 0),

then increasing either Et or Dt will yield a new feasible point. This is because d−1(x)

is a sum of x and h ◦ g−1(x), a composition of increasing functions, hence d−1(x) is

itself increasing. For a fixed Et, N
opt
t (Dt, Et) is increasing in Dt because g

−1(·) is an
increasing function. Fixing Dt instead, we consider two regimes: Et ≥ 0 and Et < 0.

If Et ≥ 0, then Nopt
t (Dt, Et) =

1
η g

−1(Dt + Et + g((1− η)h−1(Et)). Then, since g
−1(·)

is increasing and g((1− η)h−1(·)) is a composition of increasing functions,

Nopt
t (Dt, Et) is increasing in Et.

If, on the other hand, Et < 0, we have Nopt
t (Dt, Et) =

1
η g

−1(Dt + fg(Et)), where we

define fg(x) := x+ g((1− η)g−1(−x)). Note that since g(x) is nonnegative and

increasing for x ≥ 0, we have fg(x) ≥ x+ g(g−1(−x)) = 0, so fg(x) is also

nonnegative, and strictly positive when η > 0 and x > 0. Examining the partial

derivative with respect to Et:

∂Nopt
t

∂Et

=
1

η
· 1

g′(g−1(Dt + fg(Et)))
·
[
1− (1− η) · g

′((1− η)g−1(−Et))

g′(g−1(−Et))

]
. (32)

Now, noting that g′(x) = log2(1 + x−1) is positive for x > 0, we see that the sign of
∂Nopt

t

∂Et
is completely determined by that of

[
1− (1− η) · g′((1−η)g−1(−Et))

g′(g−1(−Et))

]
.

11



Furthermore, since g′(x) is decreasing for x > 0, we have that g′((1−η)g−1(−Et))
g′(g−1(−Et))

≤ 1,

hence [
1− (1− η) · g

′((1− η)g−1(−Et))

g′(g−1(−Et))

]
≥ [1− (1− η)] = η.

It follows that the partial derivative of Nopt
t (Dt, Et) with respect to Et is positive,

which concludes the proof.
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Figure 2. Outline of the feasible region Et ≥ −d−1(Dt). In (a) we plot the lower bound on Et for

η = 0.9, and in (b) we plot the detrended version of this curve, subtracting the best straight-line fit.

The feasible region lies above each of these curves. The detrended plot indicates that the region is not

convex.

V. Solving for One Time Instant

Consider the simple case of a single time interval, M = 1, with a classical information

demand D1 and some initial entanglement storage E0. More concretely, we mean that

over a single interval we can afford to consume entanglement at a maximal rate of E0.

Here, it is optimal to have E1 ≤ 0 since any generated entanglement could not be used

at later time intervals and would only increase our photon number N1. In fact,

assuming E0 ≥ 0 and the fact that Nopt
t (Dt, Et) is increasing in Et, we see that it is

optimal to choose E1 = max(−E0,−d−1(D1)), which is less than or equal to 0. The

minimal average photon number for a single time interval is then given as

Sopt
1 (D1, E0) = Nopt

1 (D1, E1) (33)

=
1

η
g−1

(
D1 + E1 + g((1− η)g−1(|E1|))

)
, (34)

where E1 = max(−E0,−d−1(D1)).

We plot the optimal average photon number and the associated optimal PIE at

transmissivity η = 0.9 and varying values of E0 ≥ 0 in Figures 3(a) and 3(b),

respectively. As we can see, for low enough D1, stored entanglement improves the PIE,

12



driving it up to an upper bound related to the maximum capacity gain given

unlimited entanglement. But as D1 increases, the PIE begins to drop, asymptotically

approaching the PIE in the absence of shared entanglement (E0 = 0).
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Figure 3. (a) Optimal average photon number to meet classical communication rate D1 at varying

initial entanglement storages E0 over a single time interval (M = 1). (b) The associated optimal

photon information efficiency, D1/N1. In both plots, transmissivity is η = 0.9.

VI. Solving for Two Time Instants

Next, we consider the M = 2 scenario, where we again have an initial entanglement

storage E0 ≥ 0 and now two successive demands for rates of classical communication,

D1 and D2. We want to find associated rates of entanglement generation/consumption,

E1 and E2, to minimize the total photon number Nopt
1 (D1, E1) +Nopt

2 (D2, E2), where

we assume that we will communicate at the optimal average photon number within

each of the two time intervals. We have four constraints on E1 and E2. First, we must

have E1 ≥ −d−1(D1) and E2 ≥ −d−1(D2) in order for both to be feasible by Theorem

1. The third and fourth constraints are the entanglement constraints from

optimization in Equation (17), namely that E0 + E1 ≥ 0 and E0 + E1 + E2 ≥ 0. As

such, we will assume that the following implied constraint on E0 is satisfied:

E0 ≤ d−1(D1) + d−1(D2). (35)

Were this not the case, we would have more entanglement than we could effectively

use to boost our capacity at either time instant. It would be optimal to set

E1 = −d−1(D1) and E2 = −d−1(D2).

We argue that E2 ≤ 0, reflecting that there is no need to generate new shared

entanglement in the final time interval since it cannot be used later. Stated more

rigorously, if E1 and E2 satisfy the above constraints with E2 positive, then setting

E2 = 0 would still satisfy them and would yield a lower value of Nopt
2 (D2, E2) by

Lemma 2. Furthermore, since the optimal E2 is less than or equal to zero, the

condition E0 + E1 ≥ 0 is implied by the contraint E0 + E1 + E2 ≥ 0.

13



Now, suppose that the optimal values of E1 and E2 satisfy the entanglement

constraint strictly: E1 + E2 > −E0. Then by Equation (35) we see that Et must be

strictly greater than −d−1(D1) for either t = 1 or t = 2. Since Nopt
t (Dt, Et) is

increasing by Lemma 2, we can decrease the corresponding Et while maintaining our

entanglement constraint, lowering the sum Nopt
1 (D1, E1) +Nopt

2 (D2, E2) and achieving

a more optimal PIE. Thus, we see that, assuming Equation (35), the optimal pair

(E1, E2) must satisfy E1 + E2 = −E0. We may thus simplify our optimization by

setting E1 = −E0 − E2, and optimizing only over feasible values of E2, giving the

relaxed optimization

minimize
{E2}

1

η
g−1(D1 − E0 − E2 + g((1− η)L(−E0 − E2)))

+
1

η
g−1(D2 + E2 + g((1− η)g−1(−E2))) (36)

subject to E2 ∈ [−d−1(D2), 0]

As a sanity check, we must confirm that the relaxed optimization in Equation (36)

returns a value of E1 = −E0 − E2 greater than or equal to −d−1(D1). If not, then the

condition in Equation (35) implies that it must return a value of E2 strictly greater

than −d−1(D2). In this case, though, the two summands
1
η g

−1(D1 + E1 + g((1− η)L(E1))) and
1
η g

−1(D2 + E2 + g((1− η)g−1(−E2))) of the

optimized function could both be minimized by raising E1 to −d−1(D1), and

simultaneously lowering E2 to −E0 − E1 ≥ −d−1(D2).

In Figure 4, we plot the function optimized in Equation (36) with respect to E2 varied

over its feasible range. We consider demands D1 and D2 summing to 5, and fix our

prior stored entanglement at E0 = 1 and our transmissivity at η = 0.9. As we can see,

examining the minima of the curves and the corresponding values of E2 and

E1 = 1− E2, when D1 << D2, the optimal PIE is achieved when E1 > 0. Intuitively

this means that when the initial demand for classical information is low, it benefits us

to invest photons in generating shared entanglement which can then be used to boost

capacity in the second time interval. As D1 grows with respect to D2, there is a point

beyond which it becomes optimal to generate no new entanglement during the first

time interval: E1 ≤ 0.

There are two cases in which we can determine the optimal entanglement used at each

time instance. The first is the case of equal demand in both intervals: D1 = D2. In this

case, speculating the optimized function in Equation (36), we see the minimal photon

number occurs when E1 = E2 = −E0

2 . The other case is when η ≈ 1. In this case, the

optimized function in Equation (36) becomes approximately
1
η

[
g−1(D1 + E1) + g−1(D2 + E2)

]
. This achieves its minimum when

D1 + E1 ≈ D2 + E2, or E2 ≈ 1
2 (D1 −D2 − E0), if feasible.

In Figure 5, we depict the effects of varying the initial stored entanglement E0 in the

M = 2 optimization. Figure 5(a) shows the average total photon number

Sopt
2 (D1, D2, E0), again fixing D1 and D2 to sum to 5 and setting η = 0.9, plotted
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Figure 4. Optimal average photon numbers over two time intervals. Plotted are minimal values of

N1 +N2 for varying demand pairs (D1, D2) satisfying D1 +D2 = 5. The initial entanglement storage is

fixed at E0 = 1 for all cases, and the transmissivity is η = 0.9.

with respect to D1. Figure 5(b) shows the resulting average photon information

efficiency, 5/Sopt
2 (D1, D2, E0). As we can see, raising E0 from 0 to 2 nearly triples the

number of bits communicated per photon over the two time intervals for certain values

of D1 and D2.

VII. M > 2 Time Instances

Consider the more general case of M time intervals. For demands D1, ..., DM and a

given set of feasible E1, ..., EM , Theorem 1 shows that the optimal photon number at

time interval t is Nopt
t (Dt, Et). Thus, we can reformulate our entanglement battery

optimization as

minimize
{Et}

M∑
t=1

Nopt
t (Dt, Et)

subject to Et ≥ −d−1(Dt), t = 1, ...,M, (37)

E0 +

n∑
t=1

Et ≥ 0, n = 1, ...,M.
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Figure 5. (a) Optimal average photon number to meet classical communication rates for M = 2 time

instants, D1 and D2, which sum to D1 +D2 = 5. We plot with respect to D1 at varying initial

entanglement storages E0, fixing transmissivity η = 0.9. (b) The associated optimal PIE.

We can generalize some of the observations we noticed in the M = 2 case. First, we

should never generate new entanglement in the final time interval:

Lemma 3. An optimal point (E1, ..., EM ) in optimization from Equation (37)

satisfies EM ≤ 0.

Proof. Suppose a feasible point (E1, ..., EM ) satisfies EM > 0. Then the point

(E1, ..., EM−1, 0) is still feasible, because the condition E0 +
∑M−1

t=1 Et ≥ 0 implies

that E0 +
∑M

t=1Et ≥ 0 for EM = 0. The new point also has a lower value of

Nopt
M (DM , EM ) by Lemma 2, hence is a more optimal point.

We can also argue the following:

Lemma 4. If E0 < d−1(D1) + ...+ d−1(DM ), then an optimal point (E1, ..., EM ) in

optimization from Equation (37) will satisfy E0 +
∑M

t=1Et = 0. If

E0 ≥ d−1(D1) + ...+ d−1(DM ), then setting Et = −d−1(Dt) yields the optimal point.

Proof. If E0 ≥
∑M

t=1 d
−1(Dt), then the set of points defined by Et = −d−1(Dt),

t = 1, ...,M , are clearly feasible, and by Lemma 2 they are optimal since each Et takes

on its minimal value.

If E0 <
∑M

t=1 d
−1(Dt), then consider a feasible point (E1, ..., EM ) and suppose the

constraint E0 +
∑M

t=1Et ≥ 0 is a strict inequality (> 0) in optimization from Equation

(37). This implies that
∑M

t=1Et >
∑M

t=1 −d−1(Dt), which means that at least one Et

is strictly greater than −d−1(Dt). Let t
∗ be the maximum such index, so that

Et = −d−1(Dt) for t = t∗ + 1, ...,M . Since these last Et are less than or equal to 0, we

see that E0 +
∑m

t=1Et > 0 for m = t∗, t∗ + 1, ...,M . We can then lower Et∗ to

max(−d−1(Dt∗), {−E0 −
∑m

t=1Et}Mm=t∗), obtaining a new point which is still feasible

16



and has a lower value of Nopt
t∗ (Dt∗ , Et∗) by Lemma 2, hence is more optimal. It follows

that the optimal feasible point satisfies E0 +
∑M

t=1Et = 0.

We can now solve the entanglement battery problem for higher numbers of time

intervals by using an inductive argument, as described in the following theorem:

Theorem 2. Consider the entanglement battery optimization in Equation (37) for M

time intervals, classical information demands D1, ..., DM , and initial stored

entanglement E0.

If E0 ≥
∑M

t=1 d
−1(Dt), then the optimal point of optimization in Equation (37) occurs

when Et = −d−1(Dt) for each t, and the minimal value is given by∑M
t=1N

opt
t (Dt,−d−1(Dt)).

If E0 <
∑M

t=1 d
−1(Dt), then the solution can be computed inductively as

Sopt
M (D1, ..., DM , E0) = min

E1∈IE1

Nopt
1 (D1, E1) + Sopt

M−1(D2, ..., DM , E0 + E1), (38)

where IE1 :=
[
max(−E0,−d−1(D1)),

(∑M
t=2 d

−1(Dt)
)
− E0

]
.

Proof. The case E0 ≥
∑M

t=1 d
−1(Dt) was shown in Lemma 4, so we will focus on the

case E0 <
∑M

t=1 d
−1(Dt). Consider a feasible point (E1, ..., EM ). After the time

interval t = 1, the remaining stored entanglement is E0 + E1 (which is nonnegative by

the constraints in Equation (37)) and there are M − 1 remaining time intervals with

demands D2, ..., DM . Thus, given E1, the values E2, ..., EM are optimized by solving

the entanglement battery problem over M − 1 time intervals, which yields optimal

photon number Sopt
M−1(D2, ..., DM , E0 + E1). If E0 + E1 ≥

∑M
t=2 d

−1(Dt), then by

Lemma 4 the optimal entanglement values will be Et = −d−1(Dt) for t = 2, ...,M , and

Sopt
M−1(D2, ..., DM , E0 + E1) =

∑M
t=2N

opt
t (Dt,−d−1(Dt)). Thus, since N

opt
1 (D1, E1) is

increasing in E1 by Lemma 2, it is optimal to have E1 ≤
(∑M

t=2 d
−1(Dt)

)
− E0.

Furthermore, since a feasible E1 satisfies E1 ≥ −d−1(D1) and E0 + E1 ≥ 0, it must be

lower bounded as E1 ≥ max(−E0,−d−1(D1)). This establishes that we may perform

our optimization of E1 over the interval IE1 . For a given E1, the optimal photon

number in the first time interval is given by Nopt
1 (D1, E1). The result of combining

these observations is expressed in Equation (38).

In Figure 6, we show these results for three time intervals, fixing E0 = 1, η = 0.9, and

demands D1, D2, and D3 summing to 5. Figure 6(a) shows the minimum average

photon number plotted with respect to D1 and D2 (note that the lower right half of

the figure is outside the region we are considering, where the three demands are

nonnegative and sum to 5). Figure 6(b) displays the corresponding PIE. As we can

see, the highest PIE is generally achieved when the demands are roughly equal, but it
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Figure 6. (a) Optimal average photon number for M = 3 time intervals with average bit demands D1,

D2, and D3 summing to 5, initial entanglement E0 = 1, and transmissivity η = 0.9. (b) The associated

photon information efficiency. (c) The reduction in average photon number over consuming the stored

entanglement at a constant rate, E1 = E2 = E3 = −1/3, plotted where optimization in Equation (17)

is feasible for the associated values of D1, D2, and D3. (d) The associated percent increase in PIE. All

plots are with respect to (D1, D2), with the lower right half omitted since it falls outside the domain in

which D1 +D2 +D3 = 5.

is interesting to look at the three corners of the triangles formed in the figure, which

correspond to when the bulk of the classical information is demanded in only one of

the three time intervals. Among these three cases, the highest PIE corresponds to

when D3 = 5, in which case the first two time intervals can be spent generating extra

entanglement to facilitate the classical communication. Conversely, the lowest PIE

corresponds to when D1 = 5, in which case the second two intervals are not used at all.

Figures 6(c) and 6(d) respectively show the corresponding reduction average photon

number and percent increase in PIE compared to what we would achieve by

communicating at a constant rate of entanglement consumption,

E1 = E2 = E3 = −1/3. Figures 6(c) and 6(d) are only plotted in the feasible region of

optimization in Equation (17), where −1/3 ≥ −d−1(Dt) for t = 1, 2, 3. As we can see,

when the demands for classical information vary significantly over the three time
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intervals, optimizing our entanglement usage can significantly increase our PIE over a

uniform rate of consumption, sometimes by as much as 45%.

VIII. Conclusion

We have demonstrated that over the pure-loss bosonic channel, using knowledge of

time-varying demands for classical communication rates, we can optimize the rates at

which we generate or consume entanglement, as well as the associated average photon

number, in order to maximize our overall photon information efficiency. By

formulating the problem as a finite-time discrete optimization, we were able to derive

a concise description for the feasible region of rates of entanglement generation and

consumption, as well as a functional form for the optimal average photon number at

which to communicate at given rates of classical communication and entanglement

usage. We used this to derive an expression for the solution to the entanglement

battery problem for an arbitrary number M of time intervals, and to compute the

optimal photon information efficiency for M = 1, 2, and 3. In particular, our results

yielded cases in which we can benefit by using some of our photon resources to

generate entanglement during times of relatively low demand for classical information,

which we can then use to communicate at a lower average photon number during

times of higher demand. Since we worked under the assumption that we can achieve

the capacity region of (2) in each of our time intervals, some care must be taken to

generalize our results to the case of a continuously time-varying demand profile. More

work still is required to construct explicit codes and protocols which achieve the PIE

values that we predict, and to extend our results to the thermal noise bosonic channel.

We may also treat problems such as limits on the amount of quantum memory at our

disposal with which to store entanglement, or limits on the amount of time over which

we can reasonably store it. These limits manifest themselves naturally as new

constraints on the entanglement variables Et in our optimization. Another important

avenue to pursue is to consider a nonzero demand for qubit communication (Q > 0) in

our optimization. Arguably, one of the most important uses of entanglement is as a

means for teleporting quantum states, which are much more difficult to communicate

than classical bits. As such, an entanglement battery treatment of qubit

communication would be very valuable. Our results represent an important step in

designing advanced deep space optical communication protocols, allowing us to

determine the average photon numbers and entanglement usage profiles required to

maximize our overall photon information efficiency.
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